Analysis of the effect of tube and mas voltage variations on contrast in digital radiographic systems

  • Purwanto Purwanto Program Studi Sarjana Terapan Teknologi Pencitraan Radiologi, Politeknik Sandi Karsa, Sulawesi Selatan, Indonesia
  • Wenda Nastasia Program Studi Sarjana Terapan Teknologi Pencitraan Radiologi, Politeknik Sandi Karsa, Sulawesi Selatan, Indonesia
Keywords: density, milliampere-second, radiographic contrast, tube voltage

Abstract

Introduction: Digital radiography has become one of the most important diagnostic techniques in the field of radiology, offering advantages in terms of image quality and efficiency.

Objective: This study aims to analyze the effect of tube voltage (kV) and milliampere second (mAs) variations on contrast and image density in digital radiographic systems. The selection of the right exposure factor is a fundamental principle for radiographers to produce quality images.

Methods: This study uses an experimental method with two variables: tube voltage variations (46 kV, 50 kV, 55 kV, 60 kV, and 66 kV) with fixed mAs values (8 mAs), and mAs variations (2 mAs, 4 mAs, 6 mAs, 8 mAs, and 10 mAs) with fixed tube voltages (50 kV).

Result: The study showed that the variation of tube tension had a significant effect on the density value of the image. A tube voltage of 46 kV produces a minimum density of 0.02 and a maximum of 3.22, while a 66 kV produces a minimum density of 1.88 and a maximum of 2.68. The density increases as the tube tension increases, but the contrast of the image tends to decrease, following an exponential relationship with a correlation value of R² = 0.90. In contrast, the mAs variation shows that even though the density increases linearly, the contrast of the image remains unaffected.

Conclusion: This study emphasizes the importance of understanding the regulation of exposure factors, where tube voltage has a greater effect on image quality than mAs. This study provides recommendations for optimal regulation in radiography practice to achieve better results

Downloads

Download data is not yet available.

References

Afandy, A. N., Tori, M. B., Bintalib, S. O., & Soh, B. L. P. (2024). Threshold in breast compression reduction for full-field digital mammography and digital breast tomosynthesis. Radiography, 30(1), 217–225. https://doi.org/https://doi.org/10.1016/j.radi.2023.11.008

Alsleem, H., Paul, U., Mong, K. S., & Davidson, R. (2014). Effects of radiographic techniques on the low-contrast detail detectability performance of digital radiography systems. Radiologic Technology, 85(6), 614–622.

Brooke, N., Elliott, J., Murphy, T., & Vera Stimpson, L. (2023). Development of a radiographic technique for porcine head ballistic research. Radiography, 29(6), 980–983. https://doi.org/https://doi.org/10.1016/j.radi.2023.08.001

Buranurak, S., Pong-Inwong, V., Hanpanich, P., Wongwiwatchai, J., Ahooja, A., & Pungkun, V. (2023). Al2O3:C optically stimulated luminescence dosimetry for evaluation of potential factors contributing to entrance skin doses received by liver cancer patients undergoing Transarterial Chemoembolization. Radiation Physics and Chemistry, 202, 110570. https://doi.org/https://doi.org/10.1016/j.radphyschem.2022.110570

Bushra, A., Sulieman, A., Edam, A., Tamam, N., Babikir, E., Alrihaima, N., Alfaki, E., Babikir, S., Almujally, A., Otayni, A., Alkhorayef, M., Abdelradi, A., & Bradley, D. A. (2023). Patient’s effective dose and performance assessment of computed radiography systems. Applied Radiation and Isotopes, 193, 110627. https://doi.org/https://doi.org/10.1016/j.apradiso.2022.110627

Chierici, A., Ciolini, R., Nascimento, D. S., & d’Errico, F. (2024). A novel silicon PIN photodiode device for radiation exposure monitoring in dental CBCT. Radiation Measurements, 177, 107258. https://doi.org/https://doi.org/10.1016/j.radmeas.2024.107258

Ching, W., Robinson, J., & McEntee, M. (2014). Patientâ€based radiographic exposure factor selection: a systematic review. Journal of Medical Radiation Sciences, 61(3), 176–190.

Dabli, D., Durand, Q., Frandon, J., de Oliveira, F., Pastor, M., Beregi, J. P., & Greffier, J. (2023). Impact of the automatic tube current modulation (ATCM) system on virtual monoenergetic image quality for dual-source CT: A phantom study. Physica Medica, 109, 102574. https://doi.org/https://doi.org/10.1016/j.ejmp.2023.102574

E, A., A, Y., & T, O. (2023). Effect of varying X-ray tube voltage and additional filtration on image quality and patient dose in digital radiography system. Applied Radiation and Isotopes, 199, 110893. https://doi.org/https://doi.org/10.1016/j.apradiso.2023.110893

Hamd, Z. Y., Alrebdi, H. I., Osman, E. G., Awwad, A., Alnawwaf, L., Nashri, N., Alfnekh, R., & Khandaker, M. U. (2023). Optimization of chest X-ray exposure factors using machine learning algorithm. Journal of Radiation Research and Applied Sciences, 16(1), 100518. https://doi.org/https://doi.org/10.1016/j.jrras.2022.100518

Karal, O., & Tokgoz, N. (2023). Dose optimization and image quality measurement in digital abdominal radiography. Radiation Physics and Chemistry, 205, 110724. https://doi.org/https://doi.org/10.1016/j.radphyschem.2022.110724

Kim, H. J., Kim, H. H., Eom, H. J., Choi, W. J., Chae, E. Y., Shin, H. J., Cha, J. H., Choi, Y. W., Choi, Y. J., Kim, K. H., Min, J., Shim, W. H., Lee, S., & Cho, S. (2024). Optimizing angular range in digital breast tomosynthesis: A phantom study investigating lesion detection across varied breast density and thickness. Physica Medica, 124, 103419. https://doi.org/https://doi.org/10.1016/j.ejmp.2024.103419

Kim, K., Cho, E. Il, Jeong, H.-W., & Lee, Y. (2024). Performance and usefulness evaluation of a software-based scatter correction technique for mammographic images. Heliyon, 10(2), e24862. https://doi.org/https://doi.org/10.1016/j.heliyon.2024.e24862

Kusk, M. W., & Lysdahlgaard, S. (2023). The effect of Gaussian noise on pneumonia detection on chest radiographs, using convolutional neural networks. Radiography, 29(1), 38–43. https://doi.org/https://doi.org/10.1016/j.radi.2022.09.011

Lockwood, P., & Mitchell, M. (2023). An assessment of the dose and image quality difference between AP and PA positioned adult radiographic knee examinations. Journal of Medical Imaging and Radiation Sciences, 54(1), 123–134. https://doi.org/https://doi.org/10.1016/j.jmir.2022.12.004

Nocetti, D., Villalobos, K., Marín, N., Monardes, M., Tapia, B., Toledo, M. I., & Villegas, C. (2023). Radiation dose reduction and image quality evaluation for lateral lumbar spine projection. Heliyon, 9(9), e19509. https://doi.org/https://doi.org/10.1016/j.heliyon.2023.e19509

Sá dos Reis, C., Caso, M., Dolenc, L., Howick, K., Lemmen, R., Meira, A., Shatku, F., Aymon, E., & Ghotra, S. S. (2023). Optimisation of exposure parameters using a phantom for thoracic spine radiographs in antero-posterior and lateral views. Radiography, 29(5), 870–877. https://doi.org/https://doi.org/10.1016/j.radi.2023.06.009

Sayed, M, Knapp, K. M., Fulford, J., Heales, C., & Alqahtani, S. J. (2024). The impact of X-ray scatter correction software on abdomen radiography in terms of image quality and radiation dose. Radiography, 30(4), 1125–1135. https://doi.org/https://doi.org/10.1016/j.radi.2024.05.006

Sayed, Mohammad, Knapp, K. M., Fulford, J., Heales, C., & Alqahtani, S. J. (2023). The principles and effectiveness of X-ray scatter correction software for diagnostic X-ray imaging: A scoping review. European Journal of Radiology, 158, 110600. https://doi.org/https://doi.org/10.1016/j.ejrad.2022.110600

Talik Sisin, N. N., Ab Rashid, R., Harun, A. Z., Geso, M., & Rahman, W. N. (2024). Comparative evaluation of gold nanoparticles as contrast agent in multimodality diagnostic imaging. Journal of Radiation Research and Applied Sciences, 17(4), 101079. https://doi.org/https://doi.org/10.1016/j.jrras.2024.101079

Tsalafoutas, I. A., Blastaris, G. A., Moutsatsos, A. S., Chios, P. S., & Efstathopoulos, E. P. (2008). Correlation of image quality with exposure index and processing protocol in a computed radiography system. Radiation Protection Dosimetry, 130(2), 162–171.

Velonis, M., Papanastasiou, E., Hatziioannou, K., Siountas, A., Kamperis, E., Papavasileiou, P., Koukourakis, M. I., & Seimenis, I. (2023). Dose optimization of 2D X-ray image acquisition protocols in image-guided radiotherapy. Physica Medica, 115, 103161. https://doi.org/https://doi.org/10.1016/j.ejmp.2023.103161

Yulianti, I., Addawiyah, A., & Setiawan, R. (2018). Optimization of exposure factors for X-ray radiography non-destructive testing of pearl oyster. Journal of Physics: Conference Series, 983(1), 12004.

Zhang, Y., Han, J., Song, R., Yan, X., Huang, Y., Leng, Q., Zhang, X., Chen, L., Ren, F., Liu, X., & Qu, G. (2023). Design and performance of a cone-beam computed tomography system for small animals. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1048, 168003. https://doi.org/https://doi.org/10.1016/j.nima.2022.168003

Published
2022-12-01
How to Cite
Purwanto, P. and Nastasia, W. (2022) “Analysis of the effect of tube and mas voltage variations on contrast in digital radiographic systems”, Jurnal Ilmiah Kesehatan Sandi Husada, 11(2), pp. 308-320. doi: 10.35816/jiskh.v11i1.750.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.