Analysis of the impact of PACS implementation on the efficiency of radiology service workflow

  • Wenda Anastasia Indriyani Program Studi Sarjana Terapan Teknologi Radiologi Pencitraan, Politeknik Sandi Karsa, Sulawesi Selatan, Indonesia
  • Akhirida Putri Program Studi Sarjana Terapan Teknologi Radiologi Pencitraan, Politeknik Sandi Karsa, Sulawesi Selatan, Indonesia
Keywords: efficiency, digitalization, radiology, PACS

Abstract

The development of information technology in radiology, especially with the implementation of the Picture Archiving and Communication System (PACS), has brought significant changes in the workflow of medical imaging. This study uses a descriptive qualitative research design to analyze the impact of PACS implementation on workflow efficiency in the Radiology department of Wahidin Sudirohusodo Hospital Makassar. The results showed that the implementation of PACS impacted five main variables: Time Efficiency, Data Input Errors, Data Accessibility and Use, Job Satisfaction, and Filmless Reduction, which was analyzed using a p-value statistical test with a significance value of <0.05. From these results, it can be concluded that the implementation of the system provides improvements in various aspects measured, especially efficiency, accuracy, accessibility, and satisfaction.

Downloads

Download data is not yet available.

References

S. Hegde et al., “A proactive learning approach toward building adaptive capacity during COVID-19: A radiology case study,†Appl. Ergon., vol. 110, p. 104009, 2023, doi: https://doi.org/10.1016/j.apergo.2023.104009.

R. P. França, A. C. B. Monteiro, R. Arthur, and Y. Iano, “Chapter 5 - An overview of the impact of PACS as health informatics and technology e-health in healthcare management,†in Cognitive Data Science in Sustainable Computing, Y.-D. Zhang and A. K. B. T.-C. S. and S. P. in I. P. Sangaiah, Eds. Academic Press, 2022, pp. 101–128.

M. F. Tannenbaum, A. Shenoy-Bhangle, A. Brook, S. Berkowitz, and Y.-M. Chang, “Radiology trainee and attending satisfaction with virtual readouts during the COVID-19 pandemic,†Clin. Imaging, vol. 88, pp. 66–77, 2022, doi: https://doi.org/10.1016/j.clinimag.2022.05.006.

H. Tadayon, B. Nafari, G. Khadem, R. Darrudi, and M. Sadeqi Jabali, “Evaluation of Picture Archiving and Communication System (PACS): Radiologists’ perspective,†Informatics Med. Unlocked, vol. 39, p. 101266, 2023, doi: https://doi.org/10.1016/j.imu.2023.101266.

L. Fernandes, D. Santos, M. Santos, and N. P. Rocha, “How to Improve Emergency Information Systems to Optimize the Care of Acute Stroke,†Procedia Comput. Sci., vol. 196, pp. 606–614, 2022, doi: https://doi.org/10.1016/j.procs.2021.12.055.

T. Amthor, “Chapter 10 - Operational analytics using modality log files,†in Motion Correction in MR, vol. 6, A. J. W. van der Kouwe and J. B. B. T.-A. in M. R. T. and A. Andre, Eds. Academic Press, 2022, pp. 145–156.

N. J. Beauchamp et al., “Integrative Diagnostics: The Time Is Now—A Report From the International Society for Strategic Studies in Radiology,†J. Am. Coll. Radiol., vol. 20, no. 4, pp. 455–466, 2023, doi: https://doi.org/10.1016/j.jacr.2022.11.015.

C. Jansen et al., “The vendor-agnostic EMPAIA platform for integrating AI applications into digital pathology infrastructures,†Futur. Gener. Comput. Syst., vol. 140, pp. 209–224, 2023, doi: https://doi.org/10.1016/j.future.2022.10.025.

V. Sharma, I. Eleftheriou, S. N. van der Veer, A. Brass, T. Augustine, and J. Ainsworth, “Modeling Data Journeys to Inform the Digital Transformation of Kidney Transplant Services: Observational Study,†J. Med. Internet Res., vol. 24, no. 4, 2022, doi: https://doi.org/10.2196/31825.

J. D. Pierce, B. Rosipko, L. Youngblood, R. C. Gilkeson, A. Gupta, and L. K. Bittencourt, “Seamless Integration of Artificial Intelligence Into the Clinical Environment: Our Experience With a Novel Pneumothorax Detection Artificial Intelligence Algorithm,†J. Am. Coll. Radiol., vol. 18, no. 11, pp. 1497–1505, 2021, doi: https://doi.org/10.1016/j.jacr.2021.08.023.

N. Subhas et al., “Imaging Service Navigators: An Approach Toward More Efficient and Effective Communications,†J. Am. Coll. Radiol., vol. 20, no. 1, pp. 79–86, 2023, doi: https://doi.org/10.1016/j.jacr.2022.10.012.

C. Hou, S. Hafeez, J. Okun, H. Chaudhry, and R. J. Dym, “‘Learning From Disaster: What Past Events Can Teach Radiology Departments about Planning for a Mass Casualty Incident,’†Curr. Probl. Diagn. Radiol., vol. 52, no. 5, pp. 418–424, 2023, doi: https://doi.org/10.1067/j.cpradiol.2023.05.009.

S. Doddi, K. Bera, A. Myers, N. Ramaiya, and S. H. Tirumani, “Development and Implementation of Integrated Radiologist-Speech Pathologist Report for Modified Barium Swallow Study: Experience at a Multi-hospital Single Health Care System,†Curr. Probl. Diagn. Radiol., vol. 52, no. 2, pp. 89–92, 2023, doi: https://doi.org/10.1067/j.cpradiol.2022.11.007.

N. McCarthy et al., “Enterprise imaging and big data: A review from a medical physics perspective,†Phys. Medica, vol. 83, pp. 206–220, 2021, doi: https://doi.org/10.1016/j.ejmp.2021.04.004.

A. Tumma, S. Berzou, K. Jaques, D. Shah, A. C. Smith, and E. E. Thomas, “Considerations for the Implementation of a Telestroke Network: A Systematic Review,†J. Stroke Cerebrovasc. Dis., vol. 31, no. 1, p. 106171, 2022, doi: https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.106171.

C. Beegle, N. Hasani, R. Maass-Moreno, B. Saboury, and E. Siegel, “Artificial Intelligence and Positron Emission Tomography Imaging Workflow: Technologists’ Perspective,†PET Clin., vol. 17, no. 1, pp. 31–39, 2022, doi: https://doi.org/10.1016/j.cpet.2021.09.008.

C. Watura, C. Kendall, and P. Sookur, “Direct Access and Skill Mix Can Reduce Telephone Interruptions and Imaging Wait Times: Improving Radiology Service Effectiveness, Safety and Sustainability,†Curr. Probl. Diagn. Radiol., vol. 51, no. 1, pp. 6–11, 2022, doi: https://doi.org/10.1067/j.cpradiol.2021.06.002.

L. O. Schwen, T.-R. Kiehl, R. Carvalho, N. Zerbe, and A. Homeyer, “Digitization of Pathology Labs: A Review of Lessons Learned,†Lab. Investig., vol. 103, no. 11, p. 100244, 2023, doi: https://doi.org/10.1016/j.labinv.2023.100244.

D. Playford et al., “Early outcomes following integration of computed tomography (CT) coronary angiography service in an established cardiology practice in disease management,†J. Cardiovasc. Comput. Tomogr., vol. 17, no. 4, pp. 254–260, 2023, doi: https://doi.org/10.1016/j.jcct.2023.04.003.

A. M. Hackett et al., “The impact of limited access to electronic medical records on neurosurgical care within the CARICOM countries: A survey and scoping review,†Brain and Spine, vol. 3, p. 101747, 2023, doi: https://doi.org/10.1016/j.bas.2023.101747.

S. Karimian and B. Rahimi, “A systematic review of effects of exchanging and sharing medical images systems in a sociotechnical context: Evaluation perspectives,†Informatics Med. Unlocked, vol. 38, p. 101212, 2023, doi: https://doi.org/10.1016/j.imu.2023.101212.

I. Mese, C. A. Taslicay, and A. K. Sivrioglu, “Improving radiology workflow using ChatGPT and artificial intelligence,†Clin. Imaging, vol. 103, p. 109993, 2023, doi: https://doi.org/10.1016/j.clinimag.2023.109993.

J. B. Kruskal, M. P. Rosen, A. K. Hara, C. Canon, and C. Wald, “Enabling Your Radiology Business to Thrive Strategic Lessons Learned During the Initial and Subsequent Surges of the Covid-19 Pandemic,†Acad. Radiol., vol. 28, no. 3, pp. 393–401, 2021, doi: https://doi.org/10.1016/j.acra.2021.01.005.

E. Ranschaert, L. Topff, and O. Pianykh, “Optimization of Radiology Workflow with Artificial Intelligence,†Radiol. Clin. North Am., vol. 59, no. 6, pp. 955–966, 2021, doi: https://doi.org/10.1016/j.rcl.2021.06.006.

B. C. Bizzo et al., “Addressing the Challenges of Implementing Artificial Intelligence Tools in Clinical Practice: Principles From Experience,†J. Am. Coll. Radiol., vol. 20, no. 3, pp. 352–360, 2023, doi: https://doi.org/10.1016/j.jacr.2023.01.002.

Published
2023-12-31
How to Cite
Indriyani, W. and Putri, A. (2023) “Analysis of the impact of PACS implementation on the efficiency of radiology service workflow”, Jurnal Ilmiah Kesehatan Sandi Husada, 12(2), pp. 508-517. doi: 10.35816/jiskh.v12i2.1237.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.