Optimization of cardiac CT angiography scistole phase image quality in the right coronary artery with helical segment snapshot method using adaptive statistical iterative reconstruction (ASIR) and temporal resolution enhancement
Abstract
Optimization of image quality in Cardiac CT Angiography (CCTA) is important for accurate evaluation of the right coronary artery (RCA). This study evaluates the effects of Adaptive Statistical Iterative Reconstruction (ASIR) and Temporal Resolution Enhancement on the image quality of the RCA sistole phase using the helical segment snapshot method. The study involved 10 patients with 40% ASIR reconstruction, 70% ASIR and 70% ASIR + Temporal Resolution Enhancement. Quantitative analysis showed that increasing ASIR levels significantly reduced noise and increased Signal-to-Noise Ratio (SNR). However, the sharpness of ASIR image is 40% higher than ASIR 70% (p < 0.05). The addition of Temporal Resolution Enhancement significantly increased the sharpness of ASIR images by 70% (mean score 4.4; p < 0.05). In conclusion, Temporal Resolution Enhancement effectively optimizes the quality of RCA images in the systole phase, supporting its use in CCTA techniques.
Downloads
References
Benz, D. C., Benetos, G., Rampidis, G., von Felten, E., Bakula, A., Sustar, A., Kudura, K., Messerli, M., Fuchs, T. A., Gebhard, C., Pazhenkottil, A. P., Kaufmann, P. A., & Buechel, R. R. (2020). Validation of deep-learning image reconstruction for coronary computed tomography angiography: Impact on noise, image quality and diagnostic accuracy. Journal of Cardiovascular Computed Tomography, 14(5), 444–451. https://doi.org/https://doi.org/10.1016/j.jcct.2020.01.002
Graby, J., Metters, R., Kandan, S. R., McKenzie, D., Lowe, R., Carson, K., Hudson, B. J., & Rodrigues, J. C. L. (2021). Real-world clinical and cost analysis of CT coronary angiography and CT coronary angiography-derived fractional flow reserve (FFRCT)-guided care in the National Health Service. Clinical Radiology, 76(11), 862.e19-862.e28. https://doi.org/https://doi.org/10.1016/j.crad.2021.06.009
Hajhosseiny, R., Rashid, I., Bustin, A., Munoz, C., Cruz, G., Nazir, M. S., Grigoryan, K., Ismail, T. F., Preston, R., Neji, R., Kunze, K., Razavi, R., Chiribiri, A., Masci, P. G., Rajani, R., Prieto, C., & Botnar, R. M. (2021). Clinical comparison of sub-mm high-resolution non-contrast coronary CMR angiography against coronary CT angiography in patients with low-intermediate risk of coronary artery disease: a single center trial. Journal of Cardiovascular Magnetic Resonance, 23(1), 57. https://doi.org/https://doi.org/10.1186/s12968-021-00758-9
Han, D., Liu, J., Sun, Z., Cui, Y., He, Y., & Yang, Z. (2020). Deep learning analysis in coronary computed tomographic angiography imaging for the assessment of patients with coronary artery stenosis. Computer Methods and Programs in Biomedicine, 196, 105651. https://doi.org/https://doi.org/10.1016/j.cmpb.2020.105651
Horinouchi, H., Sofue, K., Nishii, T., Maruyama, K., Sasaki, K., Gentsu, T., Ueshima, E., Okada, T., Yamaguchi, M., Sugimoto, K., & Murakami, T. (2020). CT angiography with 15 mL contrast material injection on time-resolved imaging for endovascular abdominal aortic aneurysm repair. European Journal of Radiology, 126, 108861. https://doi.org/https://doi.org/10.1016/j.ejrad.2020.108861
Johansen, C. B., Martinsen, A. C. T., Enden, T. R., & Svanteson, M. (2022). The potential of iodinated contrast reduction in dual-energy CT thoracic angiography; an evaluation of image quality. Radiography, 28(1), 2–7. https://doi.org/https://doi.org/10.1016/j.radi.2021.07.006
Kamani, C. H., Huang, W., Lutz, J., Giannopoulos, A. A., Patriki, D., von Felten, E., Schwyzer, M., Gebhard, C., Benz, D. C., Fuchs, T. A., Gräni, C., Pazhenkottil, A. P., Kaufmann, P. A., & Buechel, R. R. (2022). Impact of Adaptive Statistical Iterative Reconstruction-V on Coronary Artery Calcium Scores Obtained From Low-Tube-Voltage Computed Tomography – A Patient Study. Academic Radiology, 29, S11–S16. https://doi.org/https://doi.org/10.1016/j.acra.2020.10.025
Knollmann, F., Chu, L., & Lang, J. A. (2022). CT Angiography for the Detection of Pulmonary Embolism: Role of Tube Voltage and Contrast Injection Rate on Diagnostic Confidence. Academic Radiology, 29, S91–S97. https://doi.org/https://doi.org/10.1016/j.acra.2021.01.020
Liang, C. R., Ong, C. C., Chai, P., & Teo, L. L. S. (2021). Comparison of radiation dose, contrast enhancement and image quality of prospective ECG-Gated CT coronary angiography: Single versus dual source CT. Radiography, 27(3), 831–839. https://doi.org/https://doi.org/10.1016/j.radi.2021.01.004
Liu, J., Xue, H., Liu, W., Yan, J., Pan, W., Li, B., Xu, K., Wang, Y., Li, P., Xiao, Y., & Jin, Z. (2021). CT colonography with spectral filtration and advanced modeled iterative reconstruction in the third-generation dual-source CT: image quality, radiation dose and performance in clinical utility. Academic Radiology, 28(5), e127–e136. https://doi.org/https://doi.org/10.1016/j.acra.2020.03.040
Luan, X., Gao, Z., Sun, J., Chen, G., Song, H., Yao, J., Yan, S., Yu, H., & Song, P. (2022). Feasibility of an ultra-low dose contrast media protocol for coronary CT angiography. Clinical Radiology, 77(9), e705–e710. https://doi.org/https://doi.org/10.1016/j.crad.2022.05.029
Mørup, S. D., Stowe, J., Precht, H., Gervig, M. H., & Foley, S. (2022). Design of a 3D printed coronary artery model for CT optimization. Radiography, 28(2), 426–432. https://doi.org/https://doi.org/10.1016/j.radi.2021.09.001
Mushtaq, S., Conte, E., Pontone, G., Pompilio, G., Guglielmo, M., Annoni, A., Baggiano, A., Formenti, A., Mancini, M. E., Muscogiuri, G., Nicoli, F., Giannitto, C., Magatelli, M., Tanzilli, A., Consiglio, E., Fiorentini, C., Bartorelli, A. L., Pirillo, S. P., Pepi, M., & Andreini, D. (2020). Interpretability of coronary CT angiography performed with a novel whole-heart coverage high-definition CT scanner in 300 consecutive patients with coronary artery bypass grafts. Journal of Cardiovascular Computed Tomography, 14(2), 137–143. https://doi.org/https://doi.org/10.1016/j.jcct.2019.08.004
Schindler, P., Kehl, H.-G., Wildgruber, M., Heindel, W., & Schülke, C. (2020). Cardiac CT in the Preoperative Diagnostics of Neonates with Congenital Heart Disease: Radiation Dose Optimization by Omitting Test Bolus or Bolus Tracking. Academic Radiology, 27(5), e102–e108. https://doi.org/https://doi.org/10.1016/j.acra.2019.07.019
Shuai, T., Li, W., You, Y., Deng, L., Li, J., Peng, L., & Li, Z. (2021). Combined Coronary CT Angiography and Evaluation of Access Vessels for TAVR Patients in Free-Breathing with Single Contrast Medium Injection Using a 16-cm-Wide Detector CT. Academic Radiology, 28(12), 1662–1668. https://doi.org/https://doi.org/10.1016/j.acra.2020.08.003
Song, Y., Ren, S., Lu, Y., Fu, X., & Wong, K. K. L. (2022). Deep learning-based automatic segmentation of images in cardiac radiography: A promising challenge. Computer Methods and Programs in Biomedicine, 220, 106821. https://doi.org/https://doi.org/10.1016/j.cmpb.2022.106821
Takafuji, M., Kitagawa, K., Mizutani, S., Oka, R., Kisou, R., Sakaguchi, S., Ichikawa, K., Izumi, D., & Sakuma, H. (2022). Deep-learning reconstruction to improve image quality of myocardial dynamic CT perfusion: comparison with hybrid iterative reconstruction. Clinical Radiology, 77(10), e771–e775. https://doi.org/https://doi.org/10.1016/j.crad.2022.06.013
Takagi, H., Leipsic, J. A., Indraratna, P., Gulsin, G., Khasanova, E., Tzimas, G., Lin, F. Y., Shaw, L. J., Lee, S.-E., Andreini, D., Al-Mallah, M. H., Budoff, M. J., Cademartiri, F., Chinnaiyan, K., Choi, J. H., Conte, E., Marques, H., de Araújo Gonçalves, P., Gottlieb, I., … Chang, H.-J. (2021). Association of Tube Voltage With Plaque Composition on Coronary CT Angiography: Results From PARADIGM Registry. JACC: Cardiovascular Imaging, 14(12), 2429–2440. https://doi.org/https://doi.org/10.1016/j.jcmg.2021.07.011
Talha, S. M. U., Mairaj, T., & Yousuf, W. Bin. (2021). Novel FBP based sparse-view CT reconstruction scheme using self-shaping spatial filter based morphological operations and scaled reprojections. Biomedical Signal Processing and Control, 64, 102323. https://doi.org/https://doi.org/10.1016/j.bspc.2020.102323
Vecsey-Nagy, M., Jermendy, Ã. L., Suhai, F. I., Panajotu, A., CsÅ‘re, J., Borzsák, S., Fontanini, D. M., Kolossváry, M., Vattay, B., Boussoussou, M., Csobay-Novák, C., Merkely, B., Maurovich-Horvat, P., & Szilveszter, B. (2021). Model-based adaptive filter for a dedicated cardiovascular CT scanner: Assessment of image noise, sharpness and quality. European Journal of Radiology, 145, 110032. https://doi.org/https://doi.org/10.1016/j.ejrad.2021.110032
Wang, S., Xiao, T., Liu, Q., & Zheng, H. (2021). Deep learning for fast MR imaging: A review for learning reconstruction from incomplete k-space data. Biomedical Signal Processing and Control, 68, 102579. https://doi.org/https://doi.org/10.1016/j.bspc.2021.102579