Analysis of the effect of heel effect on radiation dose distribution in breast and thyroid organs in lumbar radiographic examination
Abstract
Lumbar radiography is a common procedure but poses a risk of radiation exposure to sensitive organs such as the breast and thyroid. This study analyzed the effect of the Heel Effect on the distribution of radiation doses in these organs using an experimental method with an acrylic phantom and an ALOKA pen-dosimeter. Measurements were made on anteroposterior (AP) and lateral (LAT) projections with variations in the orientation of the anode-cathode. The results showed that the cathode orientation produced a higher radiation dose than the anode, with the highest dose in the thyroid at the lateral projection of the cathode orientation (18.8 ± 1.30 μSv) and the lowest at the anode orientation AP projection (5.2 ± 0.83 μSv). The study concluded that the understanding of the Heel Effect can be used to optimize dose distribution according to ALARA principles in diagnostic radiology practice.
Downloads
References
Alukic, E., & Mekis, N. (2021). How does a non-optimal tube potential influence radiation dose to the patient in lumbar spine radiography? Radiography, 27(4), 1105–1109. https://doi.org/https://doi.org/10.1016/j.radi.2021.04.014
Chang, C.-T., & Chou, M.-C. (2022). Comparison of Non-Uniform Image Quality Caused by Anode Heel Effect between Two Digital Radiographic Systems Using a Circular Step-Wedge Phantom and Mutual Information. Entropy, 24(12), 1781. https://doi.org/https://dx.doi.org/10.3390/e24121781
Chen, G., Yin, Y., Sun, L., Tang, Z., & Chen, J. (2024). Monte Carlo simulation study of the effect of thyroid shielding on radiation dose in dental cone beam CT in an adult male phantom. Radiation Protection Dosimetry, 200(20), 1971–1980. https://doi.org/https://dx.doi.org/10.1093/rpd/ncae206
Claridge Mackonis, E., Hammond, L., Esteves, A. I. S., & Suchowerska, N. (2018). Radiation dosimetry in cell biology: comparison of calculated and measured absorbed dose for a range of culture vessels and clinical beam qualities. International Journal of Radiation Biology, 94(2), 150–156. https://doi.org/https://dx.doi.org/10.1080/09553002.2018.1419304
De Roo, B., Bacher, K., & Verstraete, K. (2022). Cervical and lumbar spine imaging after traffic and occupational accidents: Evaluation of the use of imaging techniques, cumulative radiation dose and associated lifetime cancer risk. European Journal of Radiology, 151, 110293. https://doi.org/https://doi.org/10.1016/j.ejrad.2022.110293
Foster, N., Shaffrey, C., Buchholz, A., Turner, R., Yang, L. Z., Niedzwiecki, D., & Goode, A. (2022). Image Quality and Dose Comparison of 3 Mobile Intraoperative Three-Dimensional Imaging Systems in Spine Surgery. World Neurosurgery, 160, e142–e151. https://doi.org/https://doi.org/10.1016/j.wneu.2021.12.103
Fung, K. K., & Gilboy, W. B. (2000). “Anode heel effect†on patient dose in lumbar spine radiography. The British Journal of Radiology, 73(869), 531–536. https://doi.org/https://dx.doi.org/10.1259/bjr.73.869.10884750
Gatt, S., Portelli, J. L., & Zarb, F. (2022). Optimisation of the AP abdomen projection for larger patient body thicknesses. Radiography, 28(1), 107–114. https://doi.org/https://doi.org/10.1016/j.radi.2021.08.009
Hadid-Beurrier, L., Dabli, D., Royer, B., Demonchy, M., & Le Roy, J. (2021). Diagnostic reference levels during fluoroscopically guided interventions using mobile C-arms in operating rooms: A national multicentric survey. Physica Medica, 86, 91–97. https://doi.org/https://doi.org/10.1016/j.ejmp.2021.05.013
Haro, H., Ebata, S., Inoue, G., Kaito, T., Komori, H., Ohba, T., Sakai, D., Sakai, T., Seki, S., Shiga, Y., Suzuki, H., Toyota, H., Watanabe, K., & Yamato, Y. (2022). Japanese Orthopaedic Association (JOA) clinical practice guidelines on the management of lumbar disc herniation, third edition - secondary publication. Journal of Orthopaedic Science, 27(1), 31–78. https://doi.org/https://doi.org/10.1016/j.jos.2021.07.028
Hsieh, T.-Y., Chen, S.-L., Chang, Y.-R., Tyan, Y.-S., & Chen, T.-R. (2022). Effective dose for kidney-ureter-bladder plain radiography, intravenous urography, and abdominal computed tomography scan: A phantom study. Applied Radiation and Isotopes, 187, 110339. https://doi.org/https://doi.org/10.1016/j.apradiso.2022.110339
Kato, S. (2020). Complications of thoracic spine surgery – Their avoidance and management. Journal of Clinical Neuroscience, 81, 12–17. https://doi.org/https://doi.org/10.1016/j.jocn.2020.09.012
Kusk, M. W., Jensen, J. M., Gram, E. H., Nielsen, J., & Precht, H. (2021). Anode heel effect: Does it impact image quality in digital radiography? A systematic literature review. Radiography, 27(3), 976–981. https://doi.org/https://dx.doi.org/10.1016/j.radi.2021.02.014
Mankinen, M., Virén, T., Seppälä, J., Hakkarainen, H., & Koivumäki, T. (2022). Dosimetric effect of respiratory motion on planned dose in whole-breast volumetric modulated arc therapy using moderate and ultra-hypofractionation. Radiation Oncology, 17(1), 46. https://doi.org/https://dx.doi.org/10.1186/s13014-022-02014-5
Merter, A., Karaeminogullari, O., & Shibayama, M. (2020). Comparison of Radiation Exposure Among 3 Different Endoscopic Diskectomy Techniques for Lumbar Disk Herniation. World Neurosurgery, 139, e572–e579. https://doi.org/https://doi.org/10.1016/j.wneu.2020.04.079
Moonkum, N., Jitchom, S., Sukaram, S., Nimtrakool, N., Boonrat, P., & Tochaikul, G. (2023). Determination of scattered radiation dose for radiological staff during portable chest examinations of COVID-19 patients. Radiological Physics and Technology, 16(1), 85–93. https://doi.org/https://dx.doi.org/10.1007/s12194-023-00698-2
Osman Hamid, H. (2020). Evaluation of patient radiation dose in routine radiographic examinations in Saudi Arabia. Radiation Physics and Chemistry, 173, 108883. https://doi.org/https://doi.org/10.1016/j.radphyschem.2020.108883
Tonetti, J., Boudissa, M., Kerschbaumer, G., & Seurat, O. (2020). Role of 3D intraoperative imaging in orthopedic and trauma surgery. Orthopaedics & Traumatology: Surgery & Research, 106(1, Supplement), S19–S25. https://doi.org/https://doi.org/10.1016/j.otsr.2019.05.021
Zangeneh, M., Deevband, M. R., & Mohsenzadeh, B. (2020). Lifetime attributable risk of cancer incidence and mortality in routine digital radiology procedures. Clinical Imaging, 67, 226–236. https://doi.org/https://doi.org/10.1016/j.clinimag.2020.08.006
Zulkiflee, N. D. I., & Abdullah, K. A. (2021). An Investigation of Exposure to the Eyes and Thyroid of Personnel Near to Patient in Abdominal Radiography: A Phantom Study. Asian Journal of Medicine and Biomedicine, 5(S1), 29–33. https://doi.org/https://dx.doi.org/10.37231/ajmb.2021.5.s1.447