Molecular characterization of selected endophytic fungi isolate IDGG 3 leaf galing galing (cayratia trifolia L.) with the polymerase chain reaction method
Abstract
Background: Endophytic fungi live in plant tissues and are usually not harmful to their host plants. One of the host plants for endophytic fungi is bush grape leaves (Cayratia trifolia L.).
Objective: The research aimed to determine the molecular characteristics of the endophytic fungi isolates selected IDGG 3 of bush grape leaves.
Methods: The test used the polymerase chain reaction method to determine the species-level characteristics using internal transcribed spacers (ITS) 1 and 4. The DNA band was successfully amplified with 500 base pairs with 3000 markers.
Results: The fungi isolates selected IDGG 3 of bush grape leaves in molecular identification based on the Basic Local Alignment Search Tool (BLAST) analysis on Genebank NCBI that the IDGG 3 samples of bush grape leaves had a similarity level of 99%, namely Fusarium incarnatum JL5-2, Fusarium incarnatum JL3-4- 1, Fusarium incarnatum CBB-2, Fusarium incarnatum JL3-3, Fusarium incarnatum CBA-3, Fusarium incarnatum CBB-1, Fusarium incarnatum CBA-2, Fusarium chlamydospore, Fusarium cf. Incarnatum, and Fusarium sp.
Conclusion: The results of the molecular characteristics of the selected endophytic fungi isolate IDGG 3 galing-galing leaves (Cayratia trifoliata L.) have the closest degree of kinship with the species Fusarium incarnatum JL3-4-1. The importance of the PCR method in the molecular characterization of endophytic fungi, as well as opening opportunities for further exploration of the biotechnological potential of endophytic fungi from Cayratia trifolia L.
Downloads
References
Antil, S. et al. (2023) ‘DNA barcoding, an effective tool for species identification: a review,’ Molecular Biology Reports, 50(1), pp. 761–775. doi: https://doi.org/10.1007/s11033-022-08015-7.
Ashton, P. and Zhu, H. (2020) ‘The tropical-subtropical evergreen forest transition in East Asia: An exploration,’ Plant Diversity, 42(4), pp. 255–280. doi: https://doi.org/10.1016/j.pld.2020.04.001.
Aumüller, M., Bernhardsson, E. and Faithfull, A. (2020) ‘ANN-Benchmarks: A benchmarking tool for approximate nearest neighbor algorithms’, Information Systems, 87, p. 101374. doi: https://doi.org/10.1016/j.is.2019.02.006.
Balamurugan, A. et al. (2024) ‘Chrysanthemum wilt caused by Fusarium incarnatum: Etiology unveiled through polyphasic taxonomic methods,’ Physiological and Molecular Plant Pathology, 129, p. 102214. doi: https://doi.org/10.1016/j.pmpp.2023.102214.
Chang, L. et al. (2024) ‘Real-time PCR method based on single-copy nuclear DNA sequences for the quantitative detection of pork adulteration in processed beef products,’ Food Control, 163, p. 110518. doi: https://doi.org/10.1016/j.foodcont.2024.110518.
Chatain, T., Boltenhagen, M. and Carmona, J. (2021) ‘Anti-alignments—Measuring the precision of process models and event logs,’ Information Systems, 98, p. 101708. doi: https://doi.org/10.1016/j.is.2020.101708.
Doyle, R. M. et al. (2020) ‘Discordant bioinformatic predictions of antimicrobial resistance from whole-genome sequencing data of bacterial isolates: an inter-laboratory study,’ Microbial Genomics, 6(2), p. e000335. Doi: https://doi.org/10.1099/mgen.0.000335.
H. Ambo Lau, S. and Herman, H. (2020) ‘Formulasi dan Uji Stabilitas Fisik Sediaan Bedak Tabur Ekstrak Etanol Daun Ciplukan (Physalis angulata L.) Sebagai Anti Fungi di Desa Tammatto Kabupaten Bulukumba’, Jurnal Ilmiah Kesehatan Sandi Husada, 12(2), pp. 1117–1126. Doi: https://doi.org/10.35816/jiskh.v12i2.472.
Ibrahim, N. A. et al. (2025) ‘Filling the void: Morphological and molecular phylogenetic analyses of helminths assemblage from the Egyptian egret Bubulcus ibis,’ Parasitology International, 104, p. 102972. doi: https://doi.org/10.1016/j.parint.2024.102972.
M.R., R. et al. (2024) ‘Endophytic fungi of spurred mangrove, Ceriops tagal and its bioactivity potential: Predominance of Aspergillus species and its ecological significance,’ The Microbe, 4, p. 100144. doi: https://doi.org/10.1016/j.microb.2024.100144.
Mahapatra, S. et al. (2020) ‘Wheat Microbiome: Present Status and Future Perspective’, in Phytobiomes: Current Insights and Future Vistas. Singapore: Springer Singapore, pp. 191–223. doi: https://doi.org/10.1007/978-981-15-3151-4_8.
Mirsam, H. et al. (2022) ‘Molecular characterization of indigenous microbes and its potential as a biological control agent of Fusarium stem rot disease (Fusarium verticillioides) on maize,’ Heliyon, 8(12), p. e11960. Doi: https://doi.org/10.1016/j.heliyon.2022.e11960.
Myovela, H., Hussein, J. and Tibuhwa, D. (2024) ‘Treasures in our backyard: unleashing the biotechnological potentials of endophytic fungi from Tanzanian mangroves,’ Natural Product Research, pp. 1–9. doi https://doi.org/10.1080/14786419.2024.2395492.
Navia, Z. I. et al. (2022) ‘Ethnobotanical study of wild medicinal plants in Serbajadi protected forest of East Aceh District, Indonesia’, Biodiversitas Journal of Biological Diversity, 23(10). doi https://doi.org/10.13057/biodiv/d231001.
Pokhriyal, A. et al. (2024) ‘Endophytic Fungi: Cellular factories of novel medicinal chemistries,’ Bioorganic Chemistry, 150, p. 107576. doi: https://doi.org/10.1016/j.bioorg.2024.107576.
Santos, A. C. da S. et al. (2020) ‘Entomopathogenic Fusarium species: a review of their potential for the biological control of insects, implications and prospects,’ Fungal Biology Reviews, 34(1), pp. 41–57. doi: https://doi.org/10.1016/j.fbr.2019.12.002.
Stępień, Ł. et al. (2020) ‘Fusarium Secondary Metabolism Biosynthetic Pathways: So Close but So Far Away’, in Co-evolution of secondary metabolites. Springer, pp. 211–247. doi https://doi.org/10.1007/978-3-319-96397-6_28.
Twaij, B. M. and Hasan, M. N. (2022) ‘Bioactive Secondary Metabolites from Plant Sources: Types, Synthesis, and Their Therapeutic Uses,’ International Journal of Plant Biology, 13(1), pp. 4–14. doi: https://doi.org/10.3390/ijpb13010003.
Varghese, S. et al. (2024) ‘Endophytic fungi: A future prospect for breast cancer therapeutics and drug development,’ Heliyon, 10(13), p. e33995. Doi: https://doi.org/10.1016/j.heliyon.2024.e33995.
Wibberg, D. et al. (2021) ‘High quality genome sequences of thirteen Hypoxylaceae (Ascomycota) strengthen the phylogenetic family backbone and enable the discovery of new taxa,’ Fungal Diversity, 106(1), pp. 7–28. doi: https://doi.org/10.1007/s13225-020-00447-5.
Xie, Z. et al. (2022) ‘Getting Started with LINCS Datasets and Tools’, Current Protocols, 2(7), p. e355. Doi: https://doi.org/10.1002/cpz1.487.
Zhang, Y. et al. (2022) ‘Review on deep learning applications in frequency analysis and control of modern power system,’ International Journal of Electrical Power & Energy Systems, 136, p. 107744. doi: https://doi.org/10.1016/j.ijepes.2021.107744.